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Determining the middle of the bacteria cell and the proper placement of the septum is essential to
the division of the bacterial cell. In E. coli, this process depends on the proteins MinC, MinD, and
MinE. Here, the lattice Boltzmann method (LBM) is used to study the dynamics of the oscillations
of the min proteins from pole to pole. This determines the midcell division plane at the cellular level.
The LBM is applied to the set of deterministic reaction diffusion equations proposed by Howard et
al. to describe the dynamics of the Min proteins. The LBM results are in good agreement with
those of Howard et al. and agree qualitatively with the experimental results. Our good results
indicate that the LBM can be an alternative computational tool for simulating problems dealing
with complex biological systems that can be described by using the reaction-diffusion equations
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I. INTRODUCTION

Cell division or cytokinesis is the process by which a
cell separates into two after its DNA has been duplicated
and distributed into the two regions that will become
the future daughter cells. For a successful cell division
to take place, the cell has to determine the optimal loca-
tion of the cell separation and the time to start the cell
cleavage. This involves the identification of the midpoint
of the cell where the septum or cleavage furrow will form.
For Escherichia coli and other rod-like bacteria, evidence
accumulated over the past few years indicate that the
separation into two daughter cells is achieved by form-
ing a septum perpendicular to their long axes. To induce
the separation, the FtsZ ring (Z ring), a tubulin-like GT-
Pase, is believed to initiate and guide the septa growth by
contraction [1]. The Z ring is usually positioned close to
the center, but it can also form in the vicinity of the cell
poles. Two processes are known to regulate the place-
ment of the division site: nucleoid occlusion [2] and the
action of the min proteins [3]. Both processes interfere
with the formation of the Z ring, which is believed to
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determine the division site. Nucleoid occlusion is based
on cytological evidence that indicates that the Z ring
assembles preferentially on those portions of the mem-
brane that do not directly surround the dense nucleoid
mass [4].

The min proteins that control the placement of the
division site are the MinC, MinD, and MinE proteins
[3]. Experiments involving the use of modified proteins
show that MinC is able to inhibit the formation of the
FtsZ-ring [5]. MinD is an ATPase that is connected pe-
ripherally with the cytoplasmic membrane. It can bind
to MinC and activate the function of MinC [6, 7]. Re-
cent studies show that MinD recruits MinC to the mem-
brane. This suggests that MinD stimulates MinC by
concentrating it near its presumed site of activation [8,
9]. That MinE is required to give site specificity to the
division inhibitor suggests that MinE acts as a topolog-
ical specificity protein, capable of recognizing the mid-
cell site and preventing the MinC division inhibitor from
acting at that site [10]. Its expression results in a site-
specific suppression of the MinC/MinD action so that
the FtsZ assembly is allowed at the middle of the cell,
but is blocked at other sites [3]. In the absence of MinE,
the MinC/MinD is distributed homogeneously over the
entire membrane. This results in a complete blockage
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of the Z-ring formation and the subsequent formation of
a long filamentous cell which that will fail to divide [8,
9, 11, 12]. By fluorescent labeling, MinE was shown to
attach to the cell wall only in the presence of MinD [13,
14]. Because MinD interacts with MinC, it is likely that
they oscillate together. This results in a concentration
of the division inhibitor at the membrane on either cell
end, alternating between being high or low every other
20 seconds, so that the period of oscillation is about 40
seconds per cycle [8, 9]. MinE is not only required for
the MinC/MinD oscillation, it is also involved in setting
the frequency of the oscillation cycle [11]. Several lines
of evidence indicate that the MinE localization cycle is
tightly coupled to the oscillation cycle of MinD. Recently,
microscopy of fluorescently labeled proteins involved in
the regulation of E.coli division uncovered coherent and
stable spatial and temporal oscillations of these three
proteins [15]. The proteins oscillate from one end of the
bacterium to the other and move between the cytoplas-
mic membrane and the cytoplasm. The detailed mecha-
nism by which these proteins determine the correct posi-
tion of the division plane is currently unknown, but the
observed pole-to-pole oscillations of the corresponding
distribution are thought to be of functional importance.

II. LATTICE BOLTZMANN METHOD AND
MODEL DESCRIPTION

The Lattice Boltzmann method (LBM) is a numeri-
cal scheme evolved from the lattice gas model (LGM) in
order to overcome the difficulties encountered with that
model [16, 17]. The LGM or lattice gas automata is a
method to determine the kinetics of particles by utiliz-
ing a discrete lattice and discrete time. It has provided
insights into the underlying microscopic dynamics of the
physical system whereas most other approaches focus
only on the solution to the macroscopic equation. How-
ever, the LGM, in which the particles obey an exclusion
principle, has microscopic collision rules. These rules
are very complicated and require many random numbers.
These random numbers create noise or fluctuations. An
ensemble averaging is then required to smooth out the
noise in order to obtain the macroscopic dynamics which
are the results of the collective behavior of the many mi-
croscopic particles in the system and which are not sen-
sitive to the underlying details at the microscopic level.
The averaging requires a long time, which leads to an in-
crease in the amount of computational storage required
and which in turn leads to a reduction in the computa-
tional speed. For these reasons, the LBM is used only
when one is interested in the evolution of averaged quan-
tities and not in the influence of the fluctuations. The
LBM gives a correct average description on the macro-
scopic level of a fluid. The LBM can also be viewed as
a special finite difference scheme for the kinetic equation
of the discrete-velocity distribution function. The sim-

plicity and the kinetic nature of the LBM are among its
appealing features.

The LBM consists of simple arithmetic calculations
and is, therefore, easy to program. In the LBM, the
space is divided into a regular Cartesian lattice grid as a
consequence of the symmetry of the discrete velocity set.
Each lattice point has an assigned set of velocity vectors
with specified magnitudes and directions connecting the
lattice point to its neighboring lattice points. The total
velocity and particle density are defined by specifying
the number of particles associated with each of the veloc-
ity vectors. The microscopic particle distribution func-
tion, which is the only unknown, evolves at each time
step through a two-step procedure: convection and col-
lision. The first step, convection (or streaming), simply
advances the particles from one lattice site to another lat-
tice site along the directions of motion according to their
velocities. This feature is borrowed from kinetic theory.
The second step or collision is models various interactions
among particles by allowing for the relaxation of a dis-
tribution towards an equilibrium distribution through a
linear relaxation parameter. The averaging process uses
information based on the whole velocity phase space.

Most research reported in the literature is limited to
the LBM for the Navier-Stokes equations [18, 19]. The
LBM scheme has been particularly successful in simulat-
ing fluid-flow applications for a broad variety of complex
physical systems and has found application in different
areas, such as hydrodynamic systems [17,20], multiphase
and multi-component fluids [21], advection-dispersion
[22] and blood flow [23–25]. Application to complex bio-
logical systems at the cellular and the molecular biolog-
ical levels has been rare.

In the present paper, we propose a LBM to study the
partitioning of the bacterial cell during cell division. This
provides an alternative method to investigate quantita-
tively the division of the cell. We compare our results
with those obtained by numerically solving a set of deter-
ministic coarse-grained coupled reaction-diffusion equa-
tions [26] to demonstrate the validity of the proposed
LBM.

1. Reaction-diffusion Equation Model

We focus on the E. coli bacteria, a commonly stud-
ied rod shaped bacteria of approximately 2 – 6 µm in
length and around 1 – 1.5 µm in diameter. Each E.
coli bacteria divides roughly every hour via cytokine-
sis. We adopted the dynamic model of the compartmen-
tization in the bacterial cell division process proposed
by Howard et al. In the Howard model, dynamics at
the mean-field level are given by a set of coarse-grained
non-linear reaction-diffusion equations. The reaction-
diffusion equations have often been used in biological
applications to model self-organization and pattern for-
mation [27].
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Our starting point is the set of one-dimensional deter-
ministic coupled reaction-diffusion equations used to de-
scribe the dynamics of the interactions between the local
densities of MinD and MinE proteins given by Howard
et al [26]. They describe the time rates of change of the
densities due to the diffusions of MinD and MinE and to
the mass transfer between the cell membrane and the cy-
toplasm. Based on the experimental results given in Ref.
9, which showed that the MinC dynamics are similar to
those of MinD, we have not written out the equations for
MinC. In dimensionless form, the dynamics are written
as

∂nD

∂t
−DD

∂2nD

∂x2
= RD = − σ1nD

1 + σ
′
1ne

+ σ2nend (1)

∂nd

∂t
−Dd

∂2nd

∂x2
= −RD =

σ1nD

1 + σ
′
1ne

− σ2nend (2)

∂nE

∂t
−DE

∂2nE

∂x2
= RE =

σ4ne

1 + σ
′
4nD

− σ3nDnE (3)

∂ne

∂t
−De

∂2ne

∂x2
= −RE = − σ4ne

1 + σ
′
4nD

+ σ3nDnE (4)

where ns is the mass density of particle of species
s = {D, d,E, e} at time t and position x. The first equa-
tion is for the cytoplasmic MinD density nD. The second
is for the membrane-bound MinD density nd. The third
is for the cytoplasmic MinE density nE , and the last is
for the membrane-bound MinE density ne. Rs is the re-
action term and depends on the density of the species
ns and on the densities of the other species that react
with species s.Ds is the diffusion coefficient. In this pa-
per, we assume that Ds is isotropic and independent of
x. The constant σ1 represents the association of MinD
to the membrane [12]. σ

′

1 corresponds to the membrane-
bound MinE suppressing the recruitment of MinD from
the cytoplasm. σ2 reflects the rate that MinE on the
membrane drives the MinD on the membrane into the
cytoplasm. Based on the evidence of the cytoplasmic in-
teraction between MinD and MinE [7], we let σ3 be the
rate that cytoplasmic MinD recruits cytoplasmic MinE
for the membrane while σ4 corresponds to the rate of
dissociation of MinE from the membrane to the cyto-
plasm. Finally, σ

′

4 corresponds to the cytoplasmic MinD
suppressing the release of the membrane-bound MinE.
The time scale of the diffusion on the membrane is much
slower than that in cytoplasm. It seems, therefore, rea-
sonable to set Dd and De to zero. In this dynamics,
we allow for the Min protein to bind/unbind from the
membrane, but not for it to be degraded in the process.
Thus, the total amount of each type of Min protein is
conserved. The zero-flux boundary condition will be im-
posed. This boundary condition gives a closed system
with reflecting or hard-wall boundary conditions.

2. Lattice Boltzmann Equation

The dynamics determined by Eqs. (1)-(4) can be sim-
ulated using a Lattice-Boltzmann method having three
one-dimensional velocities. Let fs(~x, i, t) be the one-
particle distribution function of species s with velocity
~ei at some dimensionless time t and dimensionless posi-
tion ~x. The coordinate ~x only takes on a discrete value:
the nodes of the chosen lattice. The nearest neighbor
vectors are defined as

~ei =


~0 i = 0
x̂ i = 1
−x̂ i = 2

(5)

where x̂ is a unit vector along the x direction. For
each lattice site, we have three states for each species.
Following Ref. 28, the lattice Boltzmann equation for
fs(~x, i, t) can be written as

fs(~x + ~ei, i, t + 1)− fs(~x, i, t) = Ωs(~x, i, t) (6)

where Ωs is the collision operator for the species s and
depends on the distribution function fs. The collision
operator Ωs can be separated into two parts [29], a non-
reactive term (ΩNR

s ) and a reactive term (ΩR
s ), i.e.,

Ωs = ΩNR
s + ΩR

s (7)

In order to relate the results obtained by solving Eq.
(6) with the solutions of Eqs. (1)-(4), we need to derive
the evolution equations for the moments of the function
fs. The zeroth moment of fs, the total number of par-
ticles of species s at time t and position x, is defined
as

ns(~x, t) ≡
∑

i

fs(~x, i, t) =
∑

i

feq
s (~x, i, t) (8)

For the nonreactive term, ΩNR
s we use the Bhatnagar-

Gross-Krook (BGK) approximation with a single relax-
ation time τs [30]:

ΩNR
s = −1

τ
[fs(~x, i, t)− feq

s (~x, i, t)] (9)

where the equilibrium distribution function of the
species feq

s (~x, i, t) depends on ~x and t through the lo-
cal density and velocity. Here, we use the simple equi-
librium distribution function corresponding to a system
with zero mean flow as follow:

feq
s = ws,ins (10)

where the weights ws,i depend on the lattice symmetry
[31]. We can write

ws,i =
{

zs i = 0
(1− zs)/2 i = 1, 2,

(11)

where zs denotes the fraction of particles at rest and
can be different for different species. For the reactive
term ΩR

s , we use the simple isotropic form [31]

ΩR
s = ws,iRs, (12)
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where Rs is a non-linear reaction term and depends
on the densities of the reacting species. Thus, it couples
the Boltzmann equations for the different species. The
choice given in Eq. (12) is the simplest choice that can
provide the right macroscopic solution when using the
LBM (as we shall see later).

To show that the lattice Boltzmann equation is valid
for a reacting system, we employ a procedure called the
Chapmann-Enskog expansion [17]. We first expand the
left-hand side of Eq. 6 via a Taylor series:

fs(~x + ~ei, i, t + 1)− fs(~x, i, t),

∼=
∂fs(~x, i, t)

∂t
+ ei

∂fs(~x, i, t)
∂x

+
1
2
e2
i

∂2fs(~x, i, t)
∂x2

,

= Ωs. (13)

We then expand fs about the equilibrium distribution
function in terms of the parameter ε :

fs
∼= feq

s + εf (1)
s (14)

We now assume [29]

∂

∂x
→ ε

∂

∂x
(15)

∂

∂t
→ ε2 ∂

∂t
(16)

Rs → ε2Rs (17)

Substituting Eqs. (15), (16), and (17) into Eq. (13),
we obtain

ei
∂feq

s (~x, i, t)
∂x

= −f
(1)
s (~x, i, t)

τs
(18)

to order ε1 and

∂feq
s (~x, i, t)

∂t
+ ei

∂f
(1)
s (~x, i, t)

∂x

+
1
2
e2
i

∂2feq
s (~x, i, t)
∂x2

= ws,iRs (19)

to order ε2. From Eq. (18), we immediately obtain

f (1)
s (~x, i, t) = −τsws,iei

∂s

∂x
(20)

Inserting Eq. (20) to Eq. (19) and doing some simple
algebra, we have, to order ε2,

∂ns

∂t
− (τs −

1
2
)e2

i

∂2ns

∂x2
= Rs (21)

Eliminating the e2
i term by carrying out an averaging

with weight ws,i, we get

∂ns

∂t
− (1− Zs)(τs −

1
2
)
∂2ns

∂x2
= Rs (22)

which is the dimensionless version of the initial
reaction-diffusion equation.

To summarize, we will now implement the numerical
evaluation in two steps

· Collision step: f̃s(~x, i, t + 1) = fs(~x, i, t) − 1
τs

[fs −
feq

s ] + ws,iRs ,

· Streaming step: fs(~x + ~ei, i, t + 1) = f̃s(~x, i, t + 1)

The boundary treatment is an important issue in the
LBM simulation and advancement are still being made
[32, 33]. Here, we use the impermeable boundary sug-
gested by Zhang et al. [34].

III. NUMERICAL RESULTS AND
DISCUSSION

To demonstrate the validity of the proposed LBM ap-
plied to the Howard dynamic model for determining the
partition of E. coli mediated by min proteins, we im-
plemented the LBM as given in the previous section on
a PC using C programming. In the simulation, we use
the parameters given by Howard et al. The 2-micron-
long bacterium is divided into 250 grids. The discrete
space steps are, therefore, dx = 0.008 µm. A time step
of dt = 6.410−5 s is chosen. The dimensionless param-

Fig. 1. Space-time plots of the total MinD (left) and MinE
(right) densities. The color scale runs from the lowest (blue)
to the highest (red). The MinD depletion from midcell and
the MinE enhancement at midcell are immediately evident.
Times increase from top to bottom, and the pattern repeats
indefinitely as time increases. The vertical scale spans a time
of 1000 second. The horizontal scale spans the bacteria’s
length (2 µm).
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Fig. 2. Time-average MinD (left) and MinE (right)
densities,< n(χ) > /nmax , relative to their respective time-
average maxima as functions of the position χ (in µm) along
the bacterium.

eters are DD = 0.28, DE = 0.6, Dd = De = 0, σ1 =
1.28 × 10−3, σ4 = 5.12 × 10−5, σ2 = 4.032 × 10−7, σ3 =
2.56 × 10−6, σ

′

1 = 0.028, and σ
′

4 = 0.027. The relax-
ation time is calculated by using Eq. (22) and is given
as τs = Ds/(1− Zs) + 0.5. The initial number of MinD
and MinE is randomly initialized as 3000 for nD and 170
for nE . Each simulation takes 156,250,000 iterations for
104 s of the time division of the bacterium. We test the
system with two possible sets of the rest particle frac-
tion, zs = 1/3 and 2/3, for all species. We found that
zs = 2/3 gave the more accurate result. We now present
some results to show the validity and the accuracy of our
LBM and compare them with the results obtained from
the deterministic reaction-diffusion equations.

In Fig. 1, the space-time plots of the MinD and the
MinE concentrations for a cell of length 2 µm are shown.
They are in qualitative agreement with the simulation
obtained by Howard et al. [26] and are in agreement
with the experimental results. The MinE forms a line
up in the middle of the cell and then sweeps towards a
cell pole, displacing the MinD, which then reforms at the
opposite pole. In Fig. 2, we plot the time-averaged MinD
and MinE densities as functions of position. These are
again in excellent agreement with those given by Howard
et al. [26]. The results in both works are also in excel-
lent agreement with the experimental data of Hale et al.
[15]. The MinE concentration peaks at mid cell and has
minimum at the cell rims, with MinD being virtually out
of phase with MinE.

IV. CONCLUDING REMARKS

In this paper, we have proposed a new LBM approach
to investigate the dynamic pole-to-pole oscillations of
min proteins used to determine the middle of bacterial
cell division. We have developed a numerical scheme
based on the LBM to simulate the coarse-grained cou-
pled reaction-diffusion equations model used to describe
the MinD/MinE interaction. It is found that our results

are in good agreement with those given by Howard et
al. The results, in particular the oscillatory pattern of
min proteins, are also in qualitative agreement with ex-
perimental results [35]. The LBM approach provides an
alternative fast computational tool to study protein os-
cillation. We believe that the LBM is a useful scheme
for simulating at the cellular level those biological sys-
tem governed by the reaction-diffusion equations. In a
future work, we will generalize the current LBM so that
it can be used to study the effects of the inhomogeneity
in the intracellular space and the possibility of asymmet-
rical cell division.
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